LIST 1. Fundamentals of Logic.

- 1. Do you think that the following quote is the logical statement? If yes, give its logical value.
- a) Is the number π^2 greater than 10?
- b) The number π^2 is greater than 10.
- c) The number π^2 is less than 10.
- d) The natural number n is less than 10.
- e) There is at least one natural number less than 10.
- f) Each natural number is less than 10.
- g) Madrid is the capital of Ukraine.
- h) The number of $10^{100} + 1$ is divisible by 2;
- i) $x^2 = 4$.
- 2. Specify a logical value of the complex sentences given below:
 - a) $(2^4=16) \land (\sqrt{99}=9)$.

b) $\sim (4.6=23)$.

c) $(7>6) \vee (3<2)$

- d) (|-3| = -3) $\vee (\cos \pi = -1)$,
- f) $(e=3) \Rightarrow (\pi=1)$,
- e) $(log_2 \ 8 = 3) \Rightarrow (sin \ \pi = 2),$ f) $(e = 3) \Rightarrow (\pi = 1),$ g) It is not true that the function $f(x) = x^2$ is increasing on \mathbb{R} .
- h) $(-1)^{44} = -1$ or 2011 is an odd number.
- 3. Using the "0-1" method check if the following sentences are the laws of propositional calculus (tautologies):
- (a) $p \Leftrightarrow p$, (b) $(p \lor q) \Rightarrow q$, (c) $(p \land q \Rightarrow r) \Leftrightarrow [p \Rightarrow (q \Rightarrow r)]$,

- (d) $p \Rightarrow (\sim p \lor q)$, (e) $\sim p \Leftrightarrow \sim (p \land \sim q)$, (f) $(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$,

- (g) $\sim (p \Rightarrow \sim p)$, (h) $\sim (p \Rightarrow q) \Rightarrow (p \Rightarrow \sim q)$, (i) $(p \lor q) \Rightarrow [(p \Rightarrow q) \Rightarrow q]$
- 4. a) Define the conjunction using the alternative and the negation.
 - b) Define the alternative using the conjunction and the negation.
 - c) Define the alternative using the implication and the negation.
- 5. Which sentence is true, which is false? Write the negation of each sentence.

- (a) $\forall x \in R, (x^2 2 \ge 0)$ (b) $\exists x \in R, (x^2 2 \ge 0)$ (c) $\forall x \in R \ \forall y \in R, (x + y = 0)$
- (d) $\forall x \in R \ \exists y \in R, (x+y=0)$ (e) $\exists x \in R \ \exists y \in R, (x+y=0)$
- (f) $\exists x \in R \ \forall y \in R, (y < x^2 + 1)$ (g) $\forall y \in R \ \exists x \in R, (y < x^2 + 1)$