LIST 3. Algebraic structures.

- 1. For the algebraic system (A, \cdot) , where A={-1,1}, and \cdot is simply multiplication, prove that it is a commutative group. Build a table of operations.
- 2. For the algebraic system (Z_4, \oplus) , where $Z_4 = \{0, 1, 2, 3\}$, and \oplus is the addition modulo 4, build a table of operations. Prove that it is a commutative group.
- 3. For the algebraic system (Z_5, \oplus, \otimes) , where $Z_5 = \{0, 1, 2, 3, 4\}$, \oplus and \otimes are respectively the addition and multiplication modulo 5, build a table of operations. Prove that it is a commutative ring with unit.
- 4. Explain why the algebraic system (Z₅,⊕,⊗), where Z₅={0,1,2,3,4}, ⊕ and ⊗ are respectively the addition and multiplication modulo 5, is the algebraic field but the algebraic structure (Z₄,⊕,⊗), where Z₄={0,1,2,3}, ⊕ and ⊗ are respectively the addition and multiplication modulo 4, is not the algebraic field.
- 5. Prove that set K={x $\in \mathbb{R}$: $x = a + b\sqrt{2}$ a, b $\in \mathbb{Q}$ } with operations + and \cdot is the algebraic field.